

LED Fan

Protechnic Electric

日本総代理店

都築電気株式会社

copyright@2012 TSUZUKI DENKI CO.,LTD.

Overview

- Protechnic Fan Structure
 - FDB bearing, Seal
 - Oil Leakage prevention design
 - No Friction test
 - Dust build up prevention design
 - FDB life expectancy
 - Durability (L10 report)
 - Sound and Noise
- Protechnic Advantage
 - Active Cooling Advantages

Oil Leakage prevention design

 Oil centralized to mid point to prevent leakage

No Friction test

Dust build up prevention design - 1

 Protechnic patented herringbone seal design virtually eliminates the threat of dust and other solid particles from entering the bearing. This extends the operating life of the fan and contributes to a more stable cooling system within the LED housing.

Dust build up prevention design - 2

 Labyrinth seal structure design repels dust from the bearing and can extend the operating life and contribute to a more stable cooling system.

Life expectancy test of FDB (L10)

DC FAN LIFE EXPERIMENT REPORT

Available for these models with lower speed and same physical structure. All model may be followed by MGA or MGT series suffixes. This test report applies to 60x60x25 mm series as the right table.	M075013UF-025		
	MGT6012HF-025		
	MOTOR IZMP-025		
	MGT8012119-025	1	
Representative Test P/N : MGT6012UF-O25			
Equipment: Oven KX-08	(a) (a) (§2	3 42	

 \otimes L10 Expectancy: 10,000 hours minimum@ fan rated voltage and the temperature of 40°C. According to the equation for Arrhenius model, MTTF \div 7×L10 = 700,000 hours. And we rely on a zero failure test strategy and accelerated testing technique, to determine the total test time (t) for verifying the above life estimation by the equations,

 $t=1.036{\times}MTTF{\times}[(Br;c){\div}\,n]^{0.91}{\div}A_F$, and $A_F=2^{(Te-Ta)/10}$

where, (Br;c) is Poisson distribution factor with the failure number of r equal to 0 and the decimal confidence level of c equal to 0.90(90%), and

Stress/ Elevated Temperature Ts (°C)	Unstress Temperature Tu (°C)	Acceleration Factor A _F	Quantity of Test Devices n (pcs)	Poisson Distribution Factor Br;c	Required test time with zero failure t (hours)	Actual test time with zero failure t (hours)	Verified MTTF 40 °C (hours)	Verified L ₁₀ 40 ℃
90	40	32	30	2.303	2,763	7,903	2,523 917	360,560

Test Progress:

Date for Test Beginning	Date for Test Termination	с	urrent Test Stat	tus	Current Total Test Time (hours)
2005/5/10 10:00	2006/5/17 10:00	In process	In process (exceed requested)	Termination	7,903

Herewith , we could assume as right on the basis of above test result. Besides, if the actual test time exceed the required, it comes out that those fans' L10 expectancy and MTTF are greater than the warrant. (MTTF : means Mean Time To Failures, it should be used in a non-repairable system setting. Now we show the MTTF in our life report, that's because we will not repair the failed fans during life experiment. MTBF: means Mean Time Between failures, it should be used in a repairable system setting. Basically , MTBF is equal to MTTF they use same formula to work out a life data.)

est	Temperature for MTTF Estimation (°C)	Acceleration Factor A _F	Estimated MTTF (hours)	Estimated L ₁₀ (hours)
g.	25	90.51	7,138,715	1,019,816
e h	30	64.00	5,047,834	721,119
	40	32.00	2,523,917	360,560
TF,	50	16.00	1,261,958	180,280
	60	8.00	630,979	90,140

FDB

@ 40C, ~ 360,560 Hours ~ 15,023 Days ~ 41 Years (non-stop)

@ 60C, ~ 90,140 Hours
~ 3,755 Days
~ 10 Years (non-stop)

Life test include

- switch on/off tests
- different orientation tests

Sound and Noise

11.2 dBA FDB fan operation noise

Advantage of Protechnic Product

- Research and Development capability surpass competitors
 - Possess FDB(Fluid dynamic bearings) bearing patent
 - Specially suitable for LED lighting
 - Life expectancy much higher than Japanese 2 ball bearing
 - <u>90,000 hours @ 60 °C (equivalent to more then 10 years)</u>
 - Noise lower than Japanese 2 ball bearing
 - Less than 20dB, 1500 RPM
- QA Control:
 - 100% Operational tested
 - 20% in High temperature Monitor(80 °C /40min)
 - 100% Balance tests, improve reliability and overall life
 - 100% Vibration tests, prevent Resonance

Reduce Heatsink Cost

– Our estimate on reduction: \$4.29/unit -> \$3.17/unit (with fan)

- Create more exterior design freedom
 - Lighting Fixture exterior choices (Plasitc instead Aluminum)

The Ultimate Fan Solutions

Increase Thermal Performance

- No longer limited by the passive aluminum in term of wattage and output lumen
- Example as below: <u>18W PAR38</u> has <u>15 degree C difference</u>
 - Extend LED life
 - Support higher wattage
 - Reduce LED chips can drive LED harder

ITEM	point	Original PAR38 Passive	Modified PAR38 With our fan
	A	73.7°C	58.9°C
	B 67.2°C		51.0°C
Temperature (Room Temp 24.9°C)	С	67.8°C	51.6°C
	D	65.3°C	50.0°C
	E	64.4°C	50.7°C
	F	66.3°C	54.0°C
	G	65.5°C	51.4°C
	н	44.6°C	32.2°C
	I	46.7°C	32.9°C
	J	41.2°C	29.4°C
Woight	Heatsink	351g	95g
weight	Total Mass	679g	316g

18W PAR 38 Thermal Solution Comparison

Original PAR38

Modified PAR38

Reduce weight - Aluminium

- Reduce weight of total LED lighting fixture by 50%
- Easier for installer, even reduce complication of heavy lighting fixture
- Aluminium material cost

18W PAR 38 Thermal Solution Comparison

ITENA	noint	Original PAR38	Modified PAR38	
ITEIVI	ροιπι	Passive	With our fan	
Weight	Heatsink	351g	95g	
	Total Mass	679g	316g	

	Passive Cooling	Active C	ooling	
Model 30W				
Heatsink Weight (g)	540	170 1/3 of orig	170 ginal weight	
Max. Tcase	84.3 °C	55.1 °C	68.8 °C	
Noise	_	11.7 dB A ,0.25m	11.2 dB A 0.5m	
Life span @40°C	-	390,000hrs	still under testing	

Increase Lumen output by lowering the temperature.

Typical Light Output Characteristics vs. Temperature

Thank you